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, In this mathertical study on helical spring design, three bazic types
of load requirevents are distinguished and treated individuallya (1) the load
at assembled height, (2) the load at minimuz compressed height; and (3) the
energy content of the spring. Conventional load and stress deflection formulas
are modified by the replacement of dependent variables with independent values.
The ratio of the final spring deflection over the working stroke is formulated
to show the variation of the final stress with various required load-space con-
ditiona. Oniti mJdeiMn narater_ are Cstabliihed tgo minimize the final
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roperating stress value. Direct and simplified analytical design procedures aredeveloped for round wire and rectangular wire compression springs. Also pre-
sented are hOmographs for use as design aids and detailed numerical design ex-

aples. This study combines design characteristics and stress advantages ofnested spring systems versus a single spring for equl..flent load conditions.
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FOREWORD

The design procedures, mathematical derivations, and spring
data presented in this report are primarily a review of the material
covered in the reports given in the bibliography. This report com-
prises three major parts, and many of the important design concepts,
formulas, and charts useful to the design engineers are summarized in
one source. The first part covers the development of a direct and
simplified analytical procedure for the design of round wire compres-
sion springs. The second part describes the design characteristics
and stress advantages of nested spring systems. The final part de-
tails the derivation of a simplified design method for rectangular
wire springs.

I. I.IT

L1D3 pic I ScLa



TABLE OF CONTENTS

Page no.

Design of Roond Wire Springs I

Introduction I
Basic Spring Design Considerations 2
Analysis of Ranges Favorable for Spring Design 6
In the Event the Final Stress is Too High 10
General Remarks 12
Numerical Example - Initial Load Requirement 14
Numerical Example - Energy (Mean Load) Requirement 1S

Nested Spring Systems 19

Tntroduction 19
Discussion of Analysis 19

Design of Rectangular Wire Springs 35

Introduction 35
Discussion of Analysis 35
Springs Coiled on Edge 36
Springs Coiled on Flat 43

Bibliography 48

List of Symbols 49

Distribution List 53

I2

I _. •



I

TABLES

I Specification table for spring--initial
load requirement 16

2 Specification table for spring--energy
requirement 18

3 Comparative data of single spring and
nested springs 29

4 Specification table for rectangular-wire springs 43

FIGURES

1 Spring space and spring characteristcs 3

2 Percentage reduction of final stress and stress
Tange versus index of single spring 13

3 Spring indices of nested springs versus spring
index of single spring 23

S4 Comparison of single spring and two-spring nest 24

S Wire diameters of outer spring versus single spring 27

6 Rectangular wire spring5 36

7 Constants for rectangular wire springs 37

8 Variation of final stress for springs coiled on
edge and initial load PI required versus
precompression ratio 40

9 Variation of final stress for springs coiled on
edge and mean load F required versus
precompression ratio 44

10 Variation of final stress for springs coiled on
flat and initial load P1 required versus
precompression ratio 46



DESIGN OF ROUND WIRE SPRINGS

Introduction

The machine designer often faces the problem of determdning
which springs will work in a given space and will satisfy a specific
load requirement. It is necessary therefore, to allow sufficient
space at an early stage of the overall machine design in order to
avoid having an overstressed spring or using a costly spring and
having to make later changes in the design. Spring failures generally
occur when the spring becomes overstressed because the available space
is incompatible with the prescribed load requirement.

The design method described in this report is a direct procedure,
and allows for the rapid determination of the minimum final stress
possible within the given space/load requirements. Furthermore, it
shows the amount of stress reduction that can be expected by revision
of the original spring parameters.

The conventional formulas for the calculation of helical round

wire compression springs are:

Load as a function of deflection (spring rate):

P G d4

R- -T- (1)

Stress as a function of deflection:

S G d (2)
T' TDN

These formulas, as well as calculation tables and nomographs de-
rived from them, are in the proper form to calculate loads, stresses,
and energies for a given spring. However, their value in designing
springs to meet specific space-load relationships is limited because
their independent variables of

d - wire diameter

D - mean coil diameter

N - number of coils

F- free height (for determinations of deflections)
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are not given directly to the spring designer. Therefore, the designer
must assume probable values for some of these variables which agree
with one part of the required spring values. Then he must determine
the unknown values by some method based on the preceding formulas and
compare the results with the other part of the required values, usually,
the given and calculated data to not coincide so that a second step or
additional steps are necessary until the final data of the desired spring
are determined. Two points to be improved with regard to the present
methods of spring design are:

I. The present method is a trial and error method which
should be replaced by a direct method. The s)stem of formulas used
for such a direct approach should be based on the values given directly
to the spring designer, such as space figures, load requirement, etc.
Therefore, formulas (I) and (2) should be converted into an equivalent
system of formulas with independent variables that are readily avail-
able to the spring designer. This direct design procedure would result
in a considerable saving of time.

2. The assumptions to be made at the start of the calcula-
tion should be reduced to a minimum. The favorable ranges of design
parameters should be analy:ed in general in order to have a basis for
the initial assumptions. The first step in this direction is to group
all springs into three categories by load requirement.

Basic Spring Design Considerations

When a helical compression spring* has to be designed, the fol-
lowing values are usually known to the designer (compare with figure 1).

G modulAus of torsion for the spring material to be used,
Pa. (M•ean value for spring steel G = 79,290 megapascals)

0r D diameter of the cylindrical space in which spring must
w'ork, m

Hl assembled height of spring, m

H2 minimum compressed height of spring after completion of
the compression stroke, m

In addition to these materials and space requirements the desired
spring also must satisfy a load requirement. In practical design three
basic types of load requirements can be distinguished:

"*Extension springs are treated analogously.

2
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1. Initial load requirement. Here the initial load at
assembled hf'.ght P1 is specified; all retainer springs belong to this
group.

2. Final load requirement. The final load at minimum com-
pressed height P2 is given.

3. Energy requirement. Here the energy capacity E of the
spring over the working stroke (i.e., between assembled height and
minimum compressed height) is:

E PI * P2 W T WEu 2 *WP .W

With a given energy capacity over the compression stroke W, the mean
load T is also determined, therefore, the energy requirement is equiva-
lent to a mean load requirement. All springs used for stopping a
moving mass by compression or for accelerating a resting mass by ex-
tension belong to this group.

According to the three types of load requirements, all compres-
sion springs can be divided into three groups. It will be shown later
that there are basic differences between these three groups of springs
with regard to their favorable ranges cf precompression. Therefore,
a separation of these groups in the analysis will be necessary. In
some applications, a spring may have a double load requirement. How-
ever, for the following analysis only the three basic types mentioned
above are considered.

As will be shown later, it is advantageous to use the diametrul
as well as longitudinal spring space in order to have a maximum amount
of spring material for reduction of the final stress S2 at minimum
compressed height. Therefore, the chosen spring coil diameter should
be as large as possible, considering hole diameter D11 , manufacturing

tolerances, increase in coil diameter caused by compression, and final
clearance necessary.

Also, the active solid height of the spring H, = N • d should
be selected as close as possible to the minimum compressed height H12

considering the height of dead coils, manufacturing tolerances, and
final clearance necessary. After these estimates, the desired spring
must satisfy the following requirements:

4



I.
G modulus of torsion (Pa)

D mean coil diameter (m)

1Is =N d active solid height (m)

'- il - 112 working stoke (m)

P, 1': or T load requirement (N)

These given requirements represent four independent values for the
desired spring. Because a helical compression spring is completely
determined by five independent values (e.g., G, d, D, N, 1IF) there

is still one additional spring value to be chosen; e.g., the free
height lIF or the final deflection F2 or any value which characterizes
the precompression of the spring. Considering safety of spring func-
tion and spring life, this remaining spring value should be selected
so that the final stress S2 at minimum compressed height is as low

as possible.

In general, the spring designer is faced with the following
problems:

I. Favorable range. flow shall the remaining free spring
value be selected (i.e., the final deflection F2) in order to obtain
the minimum final stress S2?

2. Minimum final stress. hbat is the value of the mini-
mum final stress S,, for a given spring material, spring space, and
load requirement,

3. In case of satisfactory final stress. When the cal-
culated final stress is acceptable, what are the characteristic geo-
metrical values of the spring,

d wire diameter

DI mean coil diameter

N number of active coils

ItF free height

What is the value of the spring rate R?

(.S



4. In event calculated final stress is too high.- When
the final stress is found to be too high and unacceptable, either
nested springs should be used or the given requirements revised in
order to reduce the excessive stress value.

a. Nested springs. Here the inner spring space is
used by one or two inner springs working in a parallel with the outer
one. hMat is the reduction of final stress that is obtained with the
use of the inner space?

b. Revision of spring requiremenrs. The spring material
must be changed, the spring space increased, or the load requirement
reduced. What reduction of final stress can be expected when changing
a given spring value by a certain amount?

Analysis of Ranges Favorable for Spring Design

Mathematical Transformation of Conventional Spring Formulas

The conventional spring formulas I and 2 must be transformed
into a system of formulas more suitable for the spring designer's needs.
r-specially the wire diameter, d, and the number of coils, N, must be
eliminated. For this purpose the following typical spring values are

nt roduced:

Spring index C - D/d (3)

Active solid height It 1 N• d (4)
s

From equations 2, 3, and 4, we obtain

2 F_ 
(G)

C fS

From 1, 3, and 4, it follows that

P2  G F,

S(6)

Now the two formulas S and 6 represent a new system of formulas
for spring calculations which is equivalent to the original I and 2.
Whhen eliminating the spring index from formulas S and 6, it follows
that:

6



00.680- G- ,s L2\2 R

or (7)
P 2 . F2 0.6

- 0.731 GO6QB7 KF )

Introduction of Precompresslon Factor

The following spring data are assumed to be given values;
G, D, Its, W, and a load requirement of either P,, P3 or P. In addi-

tion to these given data, one more spring value can be chosen freely;
for cxap)le, the ratio of final deflection to stroke F./W. This ratio

characterizes the precompression of the spring and, therefore, may

be called the "precompression factor".

When introducting the precompression factor F2/1W into formula 7,

it follows that

S, • o.731 GO.&.

It W.3 (8)

Here the final stress is a function of the given values G, D, W, It
a load requirement, and the selected precompression factor F2/W.
Now the following questions are raised: How will the final stress
5, change when varyxing the last free value; i.e., the precompression
factor F:/W' Mhat is the "optimm precompression factor" which gives

the ainimum final stress possible. S2 mrin 7  The answer to these ques-
tions depends on the particular load requirement to be satisfied;
therefore. the following analysis 's suitably divided into three
cases.

7



V,

Springs with Initial Load Requirement, P

Given values: G, D, 11t .W, P1

7T1c final load is related to the initial load in terms of the

precop4)ression factor as follows:

p.,

PP (9)

2 S2  0 .731 GP 6 ) Q _) . 2/W

Differentiating. the above equation with respect to the preco•-.nrcssion

factor shows that the final stress reaches its minimum value when

F .i - 5/3 1.67

with F;/W 5/3

(5 " - l(5/3.- l) ' t.. 1.960 (11)

From equations 10 and 11 it is established that

S., 1.433 G 0 * f--6' (12)m in •C2

Therefore, it is concluded that the final stress reaches its minimum
value when F2/W T 1.67. However, the whole range from 1.35 < F2/W <
2.25 should be considered favorable for design because within this
range the final stress is less than S percent above the minimum
possible, S' min,

8



Springs with Final Load Requirement, P
2

Given values G, D, li W. P

From equation 14

0. w F0. ,p 0.6

7 0.731 GO.) (8)

The final stress reaches its minimum, S , for a precompression
2 min

factor of F,/w 1

s 2Min - 0.731 GO (:/ T) (13)

the range of I < F 2/W < 1. 1 can be considered favorable for spring

design because there the final stress is less than 6 percent above the
minimum final stress S-, min-

Springs with Energy (Mean Load) Requirement,

Given values G, D, H W, WF

The final load is related to the mean load as follows:

F2

P F•2  (14)
W- " O.S

Equations 8 and !A give the following expression:

S 0.731 G-6(-F )o(.4 ). 6 F2fW
$2 sH (F 2/W - O-S) "

(1S)

9



The optimum precompression factor again equals 1; therefore,

$' min - 0.965 G( ) ( 0

1Iowcver, the range of 1 < F2/W < 1.2 can be considered
favorable for design because within" this range the final stress is
less than 5 percent above S2 min-

Results

For all three classes of springs, it has been established that

there is an optimum precompression factor for which the final stress is

at a minimum. This optimum value is 1.67 for springs with initial load
requirement and I for springs with final load or energy requirement.

The range of F,/W, favorable for spring design, is different

for each class of springs:

P1 required. 'he range F2/W from 1.35 to ?.25 is recom-
mended. Then the final stress S2 is less than S percent above S main'

P, required. When the range of F2/W is from 1 to 1.1,

Sis less than 6 percent above S2 min

Energy required. Mhen the range of F2/W is frtcito

1.2, S, is less than 5 percent above S n

In the Event the Final Stress is Too High

bhen the final stress is too excessive to insure' satisfactory
function, the following methods of stress reduction may be possible.

Nested Springs

Here the inner spring space is used by adding inner springs
working in parallel with the outer springs. The percentage of stress
reduction obtained with nested sprLojs is directly proportional to the
spring index of the single spring. Not only is a reduction in the final
stress obtained, but the use of nested spring effects a similar reduction

10



in the stress range. Figure 2 shows the variation of the percentage
of reduction in the final stress and in the stress range with respect
to the spring index of the single spring. The graph is based on the
conditions that the nested springs and the single spring have the same
values for

active solid height, 11s

load-deflection rate, R

final load, P2

modulus of torsion, G

outside coil diameter, D0

Revisions of Spring Requirements

hben nested springs are impossible because of limited inner
space or when they give insufficient stress reduction, then the given
spring requirements must be revised in order to have the spring dork
at a reasonable stress level. When keeping G and F2/h' constant, one
or more of the following parameters should be changed:

D - coil diameter

H - active solid heights

W - stroke

Pi, P 2 or P - load required

From equations 8, 10, and IS, the minimu= final stress de-
pends on the design parameter as follows:

S2 increases in proportion to D-0.8. i.e., 10 percent
increase in the coil diazeter results in a stress reduction of 7.3
percent.

"S2 increases in proportion to H -0"6; i.e., a 10 percent
increase in the active solid height reduces the final stress by 5.6
percent.



S2 increases in proportion to W 0.6; i.e., a 10 percent
increase in the stroke raises the final stress by 5.9 percent.

S2 increases in proportion to P110-4, P 2
0 "4 or P:4;

.. e., a 10 percent increase in the load increases the stress by 3.9
percent.

General Remarks

It was assumed in the previous analysis that the mean coil diameter
1 was known, rather than the outside diameter D , for simplification
of tVe calculation, However, in practical sprifg design, the outer
diameter is ustally k:nown or closely approximated by the formula Do
0.96 DI. It has been established that, in considering the outer diameter
in the analysis, the favorable F2/W design ranges remain essentially
the same as those that were obtained based on a mean coil diameter.
The major difference is that the precompression factor for the case of
the initial load requirement is increased slightly from 1.67 to 1.75.
The optimum F2/W ratio for the case where the final load P2 or mean
load T' is required still remains at the value 1.

Generally in designing springs to satisfy a final load or a mean
load requirement, the precompression factor F2/W should be somewhat
larger than 1. Thc reason for this is that some precompression of the
spring at assembled height is always practical. It prevents the spring
from getting loose and compensates for spring set that may occur when
working at high stress levelb. Another factor, which will cause a devi-
ation from the optimum F,/W value, is that for manufacturing reasons a
wire diameter corresponding to a standard wire gage should be selected.

When designing springs to a specific initial load, the range
1.35 _ F./W < 2.25 is recommended. There the final stress is less than
S percent abo've the mini=rz stress possible. However, springs withfactors in the upper part of this range have the advantage of thinner
wires (that can withstand higher stress levels) and a narrower stress
range (S. - S ). Hfowever, they will be more susceptible to buckling

and will require closer guidance.

12
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Numerical Example - Initial Load Requirement

Given Values

Modulus of torsion, G = 79290 M4Pa

Assembled height of spring, llI - 0.2870 m

Minimum compressed height of spring, It2 a 0.1346 m

Diameter of hole in which spring must work, Dl a 0.0137 m

Initial load requirement, P - 160 N

Step 1. Select the active solid height Its as close as possi-
ble to the minimum compressed height I! , considering the height of dead
coils, manufacturing tolerances, and, final longitudinal clearance
desirej.

II - 0.90 Il, is recommended

S0.90 (0.1346) = 0.121 m

Step 2. Calculate the approximate value of the mean coil
diameter; usually D = (0.75 - 0.80) Dll is a practical choice.

Let P ( 0.80 0.l " 0.80 (0.0317) - 0.0254 m

Step 3. Let the precompression factor FP/W - 1.67

Having selected a proper value for F2/W, the spring is now

completely defined. The next stage is to determine the values for
final stress S2, load deflection rate R, wire diameter d, number of
active coils N, and the free height IF. The following is one of sev-
eral procedures of calculation that can be used:

From equation 10

S, = 0.731 GO 6 •) (-h,)OIT (F!/W

= 0.731 (79,290x10
6) 0 6  10

(.1524"\ O. 1.67 = 820 MP
- 21) 1 -.67-710 o.

14
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P1 FI2 /W-IJPi kUr.) 160= 400 N

P" PI 400 - 160
Load deflection rate, R 2 1 - 1,575 N/m

W 0.1524

d SR G 79,290 x 0.0032 m

S= H /d - 0.121/0.0032 - 38s

SP /R = 160/1575 a 0.1016 m

ItF m III + F1 - 0.2870 + 0.1016 0.3886 m

D - D + d n 0.0254 * 0.0332 - 0.0286 m

Complete data for this spring design are shohli in table 1.

Numerical Example - Energy (Mean Load) Requirement

Given Values

Modulus of torsion, G = 68,950 MiP a

Assembled height of spring, 11, a 0.1422 m

Minimum compressed height of spring, "{2 = 0.1016 m

Diameter of hole in which spring must work. D = 0.0190 a

Energy required, F = 27.1 m.N

Let IIs a 0.90 112 - 0.90(.1016)- 0.0914 m

Select D = 0.75 D|! 0 0.75 (.019) - 0.0143 m

Allow some precompression of the spring at assembled height; therefore,
let F2 /itt 1. 1

is



Table 1. Specification table for spring--initial load requirement

Wire size (m) 0.0032

Outside diameter (m) 0.0286

Total coils 40

Type of ends Closed and ground

Free height, approx (m) 0.3886

Mean assembled height (m) 0.2870

Load at mean assembled height (N) 160

Minimum operating height (m) 0.1346

Load at minimum operating height (N) 400

L.oad-deflection rate (N/m) 1575

Maximum solid height (m) 0.1308

Spring helix Optional

Material Music wire, QQ-W-470

16



Calculate the mean load value

E 27.1
T W 2•UOW - 667 N

Determine the final stress from equation IS

S - - 0.731.GO°' 6  P"(F.2 W s (O

667 0) (O.OM40 0.

- 0.731 (68,9SOxI6)0 0.14...6j (T. .

= 779 MPa

From equation 14 calculate P,

P 2U w "' -0. 0.6 667 -1223 N

P2 - P 1.223 - 667R - -- w--- 0.0203 - 27,390 N/m

Determine the value of the wire diameter

5,8D I,_ 58(27 390)(0.0143)1 (0.0914)
d -~0.0038 M

G 68,950 x 106

N = 1s /d - 0.0914/0.0038 - 24

F2  P2/R - 1223/27,390 a 0.0447 m

IF a 112 *F 2 a 0.102 + 0.045 = 0.147 m

1) a D * d - 0.152 + 0.152 x 0.014 + 0.0038 0.0178 m
0

Complete data for this spring design are shown in table 2.

17



Table 2. Specification table for spring--energy requirement

Wire size (m) 0.0038

Outside diameter (m) 0.0178

Total coils 26

Type of ends Closed and ground

Free height, approx (m) 0.147

Mean assembled height (m) 0.1422
Load at mean assembled height (N) 111

Minimum operating height (m) 0.1016

Load at minimum operating height (N) 1,223

Load-deflection rate N/m 27,390

Maximum solid height (m) 0.100

Spring helix Optional

Material Stainless steel,
QQ-W-423, F5302

ke



NESTED SPRING SYSTEMS

Introduction

A frequent problem in spring design is how to decrease the working
stress in a helical compression spring and still maintain the given
load-height requirement within the overall dimensions of height and
diameter. In other words, assume that the available spring space in
both the longitudinal and radial directions has been fully used, so
that the outer diameter and solid height of the single spring are as
large as possible. In this case, where the final stress of the single
spring is considered too high and it is not possible to revise the given
requirements, it would be practical to use nested springs in order to
obtain a stress reduction.

The nested spring system is not a new principle, but it has lacked
a clean-cut design approach. A set of equations is developed here that
simplifies the analysis, and design curves are offered which quickly
gLve the amount of stress reduction possible for a given spring index
of the single spring. This indicates immediately whether sufficient
stress savings are possible. The curves show that a two-spring nest
offers a reduction of approximately 18% and a three-spring nest, a re-
duction of about 25%.

The analysis also shows that the stress reduction varies in direct
proportion to the spring index of the single spring and that the use
of nested springs not only produces a reduction in the final stress
but also effects a siilar reutjction in the stress range--an important
consideration in fatigue life.

Discussion of Analysis

General Forimulas and Basic Assumptions

The analysis on nested springs is based primarily on equa-
tions S and 6.

GF2 s: =f~il(5)
5

P2 GF2

D 8C it

19



In order to make a valid comparison between the single spring

and the nested springs, both should have the same values for

active solid height, IfS

load deflection rate, R

free height, IIF

modulus of torsion, G

outside diameter, Do (i.e., the outside diameter of the

single spring should equal the outside diameter of the outer spring in
the nested design.)

To simplify the analysis, it is assumed that there is no
diametral clearance between the nested springs. Furthermore, for prac-
tical design, the stresses of the individual springs in a nest are
equal:

SO ,Si, SA = SB x SC

Based on the above equality conditions placed on the values

of S2, G, I , and 11S, an examination of equation 5 shows that the in-

dices of the nested springs are equal.

To convert equation 6 into terms of the outside spring diam-
eter in place of the mean spring diameter, the following expression
is used:

D C(16)

hence, equation 6 becomes

p • GF2,

[P ~ C 3(.IP(17)5 -r' O H (c-'l C)

0-2
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Replacement of a Single Spring by a Nest of Two Springs

Percentage of Stress Reduction

The physical characteristics of the single spring are

given by equations 5 and 17. Similarly, the outer spring of the nest
is described by

2P GF2
- = _ _ _ _ _ _ _(18)

(fl°) 2  811sC' 3 (C÷

GF2
S7 =.• '2||S(19)

and the inner spring of the nest, by equation 19 and

pi GF,2 (20)

(M•1 2, 811sC -3(C,.l)(
0

The relationship between the outer diameters of the
nest is

1(21

Hence equation 20 can be written in the following form:

GF2  2TD7 Iell - 8IISC, 3 1112 k'rT (22)

0

which expresses the relationship between the final load of the inner
spring and the outside diameter of the outer spring.
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It follows from equations 17, 18, and 22 that the re-
lationship of the indexes between the single spring and the two-spring
nests is

1_ _ 1 [ CI-
SCt3(C.,1) 2  2 (23)

Although this equation appears complex, its curve is practically a
straight line. Equation 23 is plotted in figure 3.

The ratio S.,/Sl of the final stress of the single spring

to that of the nested spring is obtained by combining equations 5 and 19

S1, T (24)

It can be seen from equation 24 that the reduction in
stress obtainable with the use of nested springs increases with increase
in the spring indexes. The percentage reduction is plotted against
the index of the single spring (fig 2). N'ote that, even when there
are low index values, consideration should be given to nested springs,
because it is possible in this range to obtain approximately a 10%
stress reduction. Furthermore, the stress advantage increases with
the spring index so that in the comonly used range (C - 5 to C - 9)
a stress reduction of about 18% can be reali:ed.

Dimensions of Two-Spring Nest

The next step is to determine the physical characteris-
tics of the two-spring nest. A comparison of the single spring with the
two-spring nest is shown in figure 4. A single spring is c-mpletely de-
fined when the following dimensions are known:

d - wire diameter

- number of coils

DO .outside diameter

If free height

G modulus of torsion
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The wire diameter of the outer spring is related to the
wire diameter of the single spring by:

do CLU d (2S)

Therefore, the wire size of the outer spring can be
determined by multiplying the wire diameter of the single spring by
the ratio

C'+I

From equations 23 and 25 the wire diameter of the outer

spring is also a function of only the spring index and wire diameter
of the single spring.

d° uFV(dC) (2SA)

This function cannot be expressed specifically because
of the implicit form of equation 23. However, a design chart of equa-
tion 25A showing the relationship of the three v'ariables is given in

figure S. The wire diameter of the outer spring is mainly a function
of the wire diameter of the single spring and the spring index has
comparatively little influence on the variation of d°•

For determination of the wire size of the inner spring,
the following relationship is used:

di DO - 2d0

dim -0 (26)
C'*l C'+I

The number of active coils in the nested springs can
be quickly calculated by

No - s/do (27)

Ni . 1sld1 (28)

The outside diameter of the outer spring is the same as
the single spring. The outside diameter of the inner spring is given
by the numerator in equation 26 as

i o -2do (29)
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The modulus of torsion and the free height are the same

for the single spring and the nested springs, as stated in the basic
assumptions.

Problem 1 - Double-Nest Design

Given the following single spring:

Dimensions

d - wire diameter a 0.0025 m

D outside diameter - 0.0209 m

C - spring index = D/d - 7.24

- number of active coils = 10

fs- active solid height a d-N = 0.0254 m

itF - free height - 0.0826 m

"I - mean assembled height - 0.0610 m

-2 _ minimum operating height -0.0318 m

G - modulus of torsion = 79,290 MPa

Loads and Stress

) - load at III = 142.3 N

P, - load at Iit = 338.1 N

R - load-deflection rate - 6,655 N/m

S/F - stress-deflection rate = 18,640 x 106 N/M3

The problems are: (1) to determine the stress reduction
obtained by the replacement of a single helical spring with a two-spring
nest and (2) to determine the dimensions of the nested springs.

From figure 2, for a single spring with an index value
of 7.24, an 181 stress reciction is obtainable with a nested design.
This anans that for th g.ven single spring with a final stress of
965 MP the final stress of a nested design will be 793 MPa.
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The spring index of the nested design is obtained from
figure 3. For this particular example, C' = 8.0. The wire size of the
outside spring, dO, is calculated from equation 25 to be 0.0023 m; this
value can also be obtained directly from figure S. Also, for the outer
spring

NO Ifs /d° = 0.025/0.0023 a 11 coils

0 0.0209 m
0

H = 0.0826 mF

From equations 26, 28, and 29 the dimensions of the
inner spring are

i 0.0209 - 2(0.0023)
d = 8. = 0.0018 m

N 0.0254/0.0018 = 14

D0 0.0209 - 2(0.0023) - 0.0162 m
0

IfF = 0.0826 m

The load-deflection rates for the double-nest springs
are 4,203 and 2,452 N/m, the total of which equals the load-deflection
rate of the single spring, 6,655 N/m.

Complete data on the single and nested springs are given
in table 3. The combined functional loads of the nested springs are
equal to those of the single spring (i.e., 89 + 53 = 142 N load at
assembled height and 213 * 125 = 33S N load at minimum operating
height), but that the final stress of both springs in the nested design
has been reduced to '93 MPa.

Replacement of a Single Spring by a Nest of Three Springs

Percentage of Stress Reduction

For the outer spring

AP7 GF2  (30)MDA--• 811 '' [C" - (o
0 5
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For the center spring

B
P2  GF2  (31)
(DB) 8HsC"3 [C"÷112

The relationship between the diameters of the outer
and center springs is

DB = A IC"-Il

D D

ie,ice, equation 31 becomes

2 = GF:2 C l(32)
" (DA)2 811! C''3 IC"*117 IC"e*I

For the inner spring

C
P 2  GF 2 (33)

(DC) 2 sH c' 3 Ic",.112
o s

With the successive transference of outer diameters.
equation 33 becomes

C G F
P2  (34)__

co2 8 c,1 C2 3

4 The final stress in each of the three springs is
given by

GF?

27 C192 IHs
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When the load-diameter equations 30, 32, and 34 are compared
with equation 17, the relationship of the index of the single spring
with the nexted springs is obtained:

1 1
ETT[ci12 = -c;3 (c,,.ll 2  ,,1 L,.

(36)

Equation 36 is plotted in figure 3. As in the case of
the index equation associated with the two-spring nest, equation 36
also approximates a straight line.

Analogous to the double nest, the following similar re-
lationship exists between the spring indexes and final stresses of the
single spring and the triple nest (from equations S and 35):

sit a (37)

2

The percentage reduction in final stress, obtained by the
substitution of a triple nest for a single spring, is shown in figure 2.
A stress reduction of about 2S% is achieved with comon values for the
spring index (from C - S to C = 9). The percentage gain of the third
spring represents approximately an additional 7% stress reduction be-
yond an equivalent double nest (S < C < 9). For values of C less than

S, the stress advantage beyond & double nest steadily decreases. There-
fore, C a 4 should be considered the lower limit for the practical use
of a three-spring nest.

Dimensions of Three-Spring Nest

From equations S, 30, 32, 34, and 36 the following ex-
pressions are obtained which equate the wire diameters of the triple
nest to the wire diameter of the single:

*dA C.l d (38)

d [c. 1 [c,, -i1 d (39)

(C".i 12

dC [C+II WC-IIs d (40)
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The number of active coils in each spring is

NA U LS (41)

dA

N Hs

NB .. L (42)
dB

N C a (43)

and the outer diameters are determined by

DA . D (44)
o 0

DB . DA _ 2 dA (45)
o o

DC . DB 2d B (46)
O o

Problem 2 - Triple-Nest Design

Mien the same single spring is considered (as defined

in the first problem with a spring index = 7.24), figure 2 shows that

slightly more than 25% stress reduction is possible with the substitu-

tion of a three-spring nest.

From figure 3, the spring index of the triple nest is

." =8.4. The wire sizes of the three springs are (from equations 38,

39, and 40)
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dA (7.24+1) (0. 0025)

d . (8.4+1) ' 0.0022m

dB . (7.24+1) (8.4-1) (0.0025) - 0.0017 m
(8.4+1)2

dC = (7.24+1) (8.4-1)2 (0.002S) = 0.0014 m(8.4-1)3

The numbers of active coils are (from equations 41
through 43)

DA a D - 0.0209 m
0 0

DB - 0.0164 m
0

DC = 0.0130 m
0

Dimensions of the individual springs for the triple-nest
design are listed in table 3 for quick comparison with the double nest
and the single spring. The functional loads of the single spring are
maintained and are equal to the combined load of the triple nest. Thus,
the combined loads at the assembled height a 71 + 44 +27 v 142 N,
which is equal to that of the single spring. Also, the combined loads
at the minimun operating height - 169 + 107 + 62 - 338 N, equal to
that of the single spring. However, the final stress of 965 ?P& for a
single spring has been reduced to 717 MPa for the triple nest.

Reduction in Fatigue Stress

Numerous tests have shown that decreasing the stress rar-ge
(S-S 1 ) directly increases the fatigue life of a spring. A substan-
tial gain in life is obtained by the reduced stress range of nested
springs. This reduction is proportional to the reduction that has
been obtained in the final stress.
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Thus

S2 - S1 C' 2  S 2 - S, Ctt 2

E stand

Furthermore, the percentage reduction in the stress range is

equal to the percentage reduction in the final stress, &s shown graph-
ically in figure 2. For example, in comparing the single spring with
the two-spring nest, the percentage reduction in final stress is

AS S2 - Si 100 96Sxi0 6 - 793x00 6  100 , 18%

S2 965x10 6

and the percentage reduction in stress range is

[S2-SIO - [Sý-Sfl 1 SS8x10 6 -407xI0 6  0
4(S2-SI) * 100 - 100 - 18%fs2-s1  (55811x061

Other benefits of nested springs are: (1) the use of thinner
wire sizes that have higher maximum design stresses and (2) smaller
Wahl correction factors, which are important when corrected stresses
are considered. The stress formula, equation S, does not include the
Wahl factor. If corrected stresses were to be considered, the per-
centage reduction in the final stress and in the stress range would

be a few point:; higher.
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DESIGN OF RECTANGULAR WIRE SPRINGS

Introduction

Use of rectangular cross sectional material is advantageous in
applications in which the radial space is restricted because the spring
must work within a specified hole diameter and also over a fixed rod
size. In these applications, where round wire cannot meet the loading
requirements, the designer must resort to the use of a rectangular section.
A typical example of this situation is the buffer spring for the MRS
caliber .50 machine gun. Here, the spring operates within a guide tube
with an inside diameter of 0.0269 m and over the bolt drive spring with
outside diameter of 0.0165 m. Further more, the assembled height of
the buffer spring is 0.1295 m and must have an energy capacity of 27 m*N
over a stroke of 0.0095 m. After allowances are made for adequte diam-
etral clearance and for manufacturing tolerances, there results a maxi-
mum round wire shze of 0.0047 m. This small diameter prohibits a satis-
factory round wire design; therefore, a practical recourse is to con-
sider rectangular wire. The actual cross section of the MRS buffer
spring material is 0.0047 and 0.0142 m.

The object of this investigation is to develop a direct and sim-
plified analytical design method for rectangular wire springs. It also
includes the special case of springs fabricated from square wire. The
analytical technique that is applied in this section is analogous to
that used in the previous study on round wire springs. The procedure
that is established enables the designer to rapidly determine the
spring that has the minimum final stress and satisfies the space-load
requiremenents. Design recomendations are determined for two impor-
tant load requirements: Case 1 - initial load P1 is specified; Case 2 -
energy capacity F is specified. A further distinction is made in that
the two basic configurations of rectangular wire springs, edge-wound and
flat-wound springs (fig 6), are treated separately.

Discussion of Analysis

The usual design method based on the following conventional
equations

P K 1 .,bt 3
P - ""' •(47)

KIGtF

S K2D27N (48)

(values for Kl ahd K2 are taken from figure 7)
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is a trial and error procedure and cumbersome. The system of formulas
for the direct approach should be based on independent variables of
spring space values and load requirement. These values are either
given directly to the designer or defined within narrow limits.

Before a design analysis is possible, algebraic expressions that
closely approximate the values of K1 and K2 must be determined. By
application of the method of least squares to curves I and 2 in fig-
ure 7, the following expressions are obtained:

K, V 0.202 (b/t) 0 .451 (49)

K2 - 0.416 (b/t)0 "22 8  (50)

Since the majority of rectangular wire springs have b/t values between
1 to 5, the curve fitting process was confined to this interval to
maintain a high degree of accuracy.

The following equations are used in the development of the design

method:

For edge-wound springs, active solid height IfS Nt (51)

For flat-wound springs, active solid height IIS -, NJ (52)

F,, total deflection

Precompression ratio =- toa- deflection (53)
w working stroke

Final load is related to the initial load as

P2 F2/W- IS($4)

Springs Coiled on Edge

Springs with Initial Load Requirement, P,

Equations 47, 49, and 51 give

P .202(b/t)l'451 Gts (55)
F 1) ifS
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The combination of equations 48, 49, 50, and 51 yields

0.485 (b/t) 0 .22 3 GFt 2  (56)

D2 
IfS

From equations S3, 54, SS, and 56, it follows that

0.92 GO' 6 W0, 6 pO.4 (F2/W)

2 (b/t). DO.8 110.6 (F 2/-)0. (57)

Equation S7 shows the variation of the final stress with
the known values of torsion modulus, initial load, and working stroke,
and with the approximated values of mean coil diameter and active solid
height.

It is important to determine the effect that the precompres-
sion ratio has on the final stress and, in particular, what is the op-
timum precompression ratio that gives the minimum final stress. By
differentiation of equation 57 with respect to F2/W and by setting the
resulting expression equal to zero, the minimum final stress is ob-
tained by F2 /N - 5/3. To show in detail the variation of the final
stress with the precompression ratio, a modified form of equation S7
is plotted in figure 8. A family of curves is obtained by letting the
ratios b/t act as a parameter with the values 2, 3, 4, and 6. Although
the final stress is at a minimum when F /W = 5/3, figure 8 shows that
values of I.S < F2 /W < 2.0 are a favorable design interval because

within this range the final stress is less than 3% above the minimum
value. Figure 8 also shows how the final stress varies with different
values of b/t. In applications where diametral space is available,
it is recommended that the ratio b/t should be large as possible.I�:Numerical example: Usually, the designer is given the fol-

i lowing information:

assembled height, It, 0,1500 M

load at assembled height, P1  413.7N

minimum compressed height, 112 0.0889 m

"modulus of torsion, G 79,290 14Pa
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Figure 8. Variation of final stress for springs coiled on edge and
initial load P1. required versus precompression ratio.
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hole diameter in which spring must fit, D11 0.0538 m

maximum final stress, S 690 MP2)

Step 1. Estimate realistic values for the mean coil diameter
and the active solid height.

The mean coil diameter for rectangular wire springs is usually
between 0.75 f and 0.90 D (which roughly corresponds with spring in-

dexes of 3 to 9). For edge-wound springs, let n - 0.85 D 0.85

(O.0538) = 0.0457 m.

For ends closed and ground HS = 0.8 112 is a good choice.

It = 0.8 (0.0889) = 0.0711 m.
S

Step 2. Solve for b/t using equation 57.

For minimum final stress let F /W = 5/3.

.357 0.92(79,290xlO6 )0 "6 (0.0611)0.6 (413.7)0."' (1.667)
(blt) = 690xi0 6 (0.0457) 0 : 8 (O.0711)O:G (0.667)0:"

and bit - 1.263

Step 3. Determine the load deflection rate; based on
F2 /W " 5/3 and P1 a 413.7 N, then P2 u 1,032 N from equation 54.

Load deflection rate

P2 " P1
R - 10,157 N/m
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Step 4. Compute the thickness t from equation 55.

10,157 (0.0457)3 (0.0711)
t 0.202(I.263)1:"3 (79,290 x lob) ] O M

and b - 1.263 (0.202(0.0050) - 0.0063 m,

"Step S. Calculate the number of active coils, outside coils
diameter, and free height.

N lIlS/t - 0.0711/0.0050 - 14.2

Do= UDb r 0.0457 * O.OOSO - 0.0507 m

IF w If * F2 - 0.0889 * 0.1016 - 0.1905 m

Complete specifications for this spring are listed in table 4
in the column titled "Spring V".
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Table 4. Specification table for rectangular-wire springs

Spring I Spring 2

Free height, HiF (m) 0.1904 0.2259

"Thickness, t (m) 0.0050 0.0058

Width, 11 (m) 0.0063 0.0173

Outside coil diameter, DO (m) 0.0507 0.0350

Assembled height, It, (m) 0.1500 0.2243

Load at assembled height, P1 (N) 414 614

Minimum compressed height, 11.(m) 0.0889 0.2083

l.oad at minimum compressed
height, P, (N) 1032 6784

Total coils, N 16.2 11.6
T

Type of ends Closed and ground Closed and ground

,Iaximum solid height i (1 n 0.0825 0.2019S

Load-deflection rate (N/m) 10,157 385,300

Material FS-9260 FS-9260

Maximum final stress, S, (WPa) 690 621
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Springs with Energy (Mean Load) Requirement, F

The energy content of a spring is related to the initial load
as

S~ (F7/W-!)E.
P1  C58)

(P /W-.S) W

Using the above relationship, equation 57 is rewritten

0.920 G0 "6 (F2 /W) W0 "2 E0 '.

S2  Cb/t) 0 ,3S 7  0. 8 11O.6 (F 2/W-O.So. (9)S

A nomograph based on equation 59 is shown in fivure 9. The
stress reaches a minimum for a precompression factor of F2/W m 1. how-
ever, the range from F2/W - I to F?/W = 1/2 can be considered favorable
for spring design because the final stress within this range is not
more than 5 above the minimum. Again, it is recommended that the
ratio b/t be made as large as the available space permits since the
stress is inversely proportional to b/t.

Springs Coiled on Flat

Springs with Initial Load Requirement, P1

Equations 47, 49, and 52 combined give the following ex-
pression:

0.202 (b/t) Gt'
p - 3 1{S (60)

From equations 48, 49, 50, and 52 the followring relationship
is obtained:

1.2230. 485 (h/t G , t 2

S V3  If (61)

The relationship between the final stress and the initial
load derived from equations 53, 54, 60, and 61 is

0.920(b/t) 0 24 3 GO. .O.6 (Ih)p•',
52 )O.P ii0.6 (F2/W-I) 0 (6

S (62)
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Figure 9. Variation of final stress for springs coiled on edge and
mean load Tyrequired versus precompression ratio.

45

m~mnnnuaL m: H~n~2



!I

In the case of flat-wound springs, the final stress is directly
proportional to the ratio !/t. This is shown graphically in figure 10
where smaller b/t ratios result in decreased stress values. The optimum
design range for the precompression ratio remains the same as for edge-
wound springs, 1.5 < F 2/W ' 2.0.

Springs with Energy (Mean Load) Requirement, (

The substitution of equation S8 into equation 62 results in

S, = 0"920(b/t)0 23G ' '"(2w °•

D O . 8 i .6 F / h .- 0 . S ) 0 . " , ( 6 3 )

s

Again, the minimum final stress is obtained when P2/W 1; however,
the range I < F 2/W <. 1.2 is considered favorable for spring design.

Numerical example: Typical known design parameters are

assembled height, I11, 0.2243 m

minimum compressed height, Hf, 0.2083 m

energy capacity, F 59.2 m.N

modulus of torsion, C 19,290 MPa

hole diameter, P .0365 mS~II"

maximum final stress, S 621 MPa

working stroke, W = H)- 112 .0160 m

Step 1. Pstimate values for the mean coil diameter and the
active solid height.

For flat-wound springs a reasonable choice for the mean coil
diameter is D = 0.81 0.8 (0.0365) = 0.0292 m

For ends closed and ground let I1 = 0.8 1i, = 0.8 (0.2083)
0.1666 m. S

To have some precompression at assembled height, let F2/1W
- .1.
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Step 2. Solve for b/t using equation 63

(b/rO.2413 621xl( (0.0292)0:8('1 6 6 6 )o:c,(0. 6 )0:i'
S0.02(79,290x10E6)(O.016o•0"2 1.1(59.2)0:•'

and b/t - 2.953

Step 1. Determ~ine the load-deflection rate. For 1:/w 1.1,

FI a F:. - " 0.01"6 - 0.0160 0.0016; for F = 59.2 m*N, the mean

load P equals F/W = 50.2/0.016 3•700 N

__ 3700
Load-deflection rate R V ' - a.0.6 36S,300 0/M

F, 0.0016 . 0.01

Step .1. Calculate the thickness t with equation 60

1,95,300(0.(1292)'(0.1666)

. 0.?02 (2.S 451 79,290x10C

and I- 2.953 (0.005,S - .00l'3 m

Step 7. Conpute the number of active coils, the outside

coil diameter, and the free height

-;l/Jb - 0.16661e.01-3 - 9.6

P - P , t -- 0.00 * 2 .0.e00 - 0.0150 m
0

S- I! * I - 0.20q3 * 0.0"6 0.2259 m

Complete Ireign lata for this spring are shon in t.able I "rh ti kzlumn
titled "Spring2".

-I
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LIST OF SYMBOLS

Symbols Definitions

G Modulus of torsion for spring material, P. a

d Wire diameter, m

D! itDiameter of spring hole, m

P - 1) * d Outer diameter of spring, m0

1) Mean coil diameter of spring, m

D P z - d Inner diameter of spring, m

C D/d Spring index

Number of active coils

'IT Total number of coils

tF Free height of spring, m

Assembled height of spring, m

1. ,Minimum compressedA heio.ht of spring. r

if Nd Active solid height, m
S

F Any deflection of s,)ring from free hiight, m

F' If III Initial deflection,

F, i It H{. Final deflection, m

W'• It, 1, Working stroke of spring from assembled height to
-r F, minimum compressed height, m

Spring load at deflection F, N

P1  Initial load at assembled height, N

P. 1iral load at minimum compressed height, N

so



Symbols Definitions

p1 .p 2
1iF = 2 ean load over working stroke, N

P I~nergy absorbed or delivered by the spring over
the working stroke, m*N

R P/F Load deflection rate,,/r/m

S Spring stress at deflection F, Pa

SI Initial stress at assembled height, Pa

Final stress at minimum compressed height, P

F,/w Precomprcssion factor of spring, i.e., ratio of
final deflection to working stroke

X)T'F: For illustration of some of the above symbols, see figure 1.

For Two-Spring Nest

Superscripts o and i denote dimensions of outer spring
and inner spring, respectively.

PC pt iLoad at minimum operating height, N

SI Stress at minimum operating height, Pa
0

d°0 di Wire diameter, m

0) 1i Outer dia.eter. m
O0 0

00, D1 Mean coil diameter, m

0N° Ni %Number of active coils

C - ---r Spring indexd° d'



For Thrue-Spring Nest

Superscripts A, B, and C denote dimensions of outer,
center, and inner springs, respectively.

A B C
P1,, P1 , p. Load at minimum operating helghl, N

S 1 1 Stress at minilum operating heiehzt, P

dA, d tlC Wire diameter, m

D , D B. Do Outside diameter, m

A. I. DC -en coil diameter, m
1) , ) D Me,

SA R c
A [1CNumber of active coils

tDA DB DC
C1 1  A Bj S " Spring index

dA d a j

For Rectangular-Wire Springs

b �Width of rectangular wire (long side), wa

K Deflection constant

. Stress constant

t Thickness of rectangular wire (short side) m
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